Скорость циркуляции воды в системе отопления

Содержание

  1. Принципы процесса естественной циркуляции
  2. Максимальная разность гидростатического давления
  3. Минимизация сопротивления движению воды
  4. Правила выбора и монтажа труб
  5. Однотрубные и двухтрубные схемы отопления
  6. Контур с использованием одной магистрали
  7. Вариант с применением обратной трубы
  8. Выводы и полезное видео по теме
27.03.2012, 21:21 #1
eugenmax
Посмотреть профиль
Найти ещё сообщения от eugenmax

28.03.2012, 00:07

2 | #2

Thượng Tá Quân Đội Nhân Dân Việt Nam

Ох и дурют там вашего брата!
Ты чего хочешь-то? "Военную тайну" (как на самом деле надо делать) узнать, или курсовик сдать? Если только курсовик – то по методичке, которую преподаватель и написал и ничего иного не знает и знать не хочет. И если сделаешь как надо, еще и не примет.

1. Есть минимальная скорость движения воды. Это 0.2-0.3 м/с, из условия удаления воздуха.

2. Есть максимальная скорость, которая ограничивается, чтобы трубы не шумели. Теоретически это надо расчетом проверять и некоторые программы это делают. Практически же знающие люди пользуются указаниями старинного СНиП еще 1962 года, где была таблица предельных скоростей. Оттуда и по всем справочникам разошлось. Это 1,5 м/с при диаметре 40 и более, 1 м/с для диаметра 32, 0,8 м/с для диаметра 25. Для более мелких диаметров были другие ограничения но потом на них наплевали.

Допустимая скорость и теперь есть в пукте 6.4.6 (аж до 3 м/с) и в приложении Ж СНиП 41-01-2003, только "доценты с кандидатами" постарались, чтобы бедные студенты не смогли разобраться. Там и к уровню шума привязано, и к кмс и к прочей хрени.

Но допустимая – это совсем не оптимальная. Про оптимальную в СНиП вообще не упоминается.

3. Но все-таки есть и оптимальная скорость. Не какая-то 0,8-1,5, а самая настоящая. Вернее, не сама скорость, а оптимальный диаметр трубы (скорость-то не сама важна), причем с учетом всех факторов, включая металлоемкость, трудоемкость монтажа, комплектации да и гидравлической устойчивости.

Вот секретные формулы:

0.037*G^0.49 – для сборных магистралей
0.036*G^0.53 – для стояков отопления
0.034*G^0.49 – для ммагистралей ветки, пока нагрузка не уменьшится до 1/3
0.022*G^0.49 – для концевых участков ветки с нагрузкой в 1/3 от всей ветки

Здесь везде G – расход в т/ч, а получается внутренний диаметр в метрах, который надо округлить до ближайшего большего стандартного.

Ну, а правильные пацаны вообще никакими скоростями не задаются, а просто делают в жилых домах все стояки постоянного диаметра и все магистрали постоянного диаметра. Но тебе еще рано знать, какие именно диаметры.

Если говорить о главных недостатках системы отопления с естественной циркуляцией теплоносителя, то к таковым следует отнести низкий циркуляционный напор (особенно это касается квартирных систем) и, как следствие, увеличенный размер труб. Стоит допустить небольшую ошибку в выборе диаметра труб, как теплоноситель окажется "зажатым" и не сможет преодолеть гидравлическое сопротивление.

Для того чтобы "разжать" систему, значительной ее переделки не потребуется, достаточно лишь включения в систему циркуляционного насоса и переноса расширительного бачка с подачи на обратку. При этом нужно отметить, что переносить расширитель на обратку не всегда обязательно. Когда делается простая переделка несложной (к примеру, квартирной) системы, бачок можно оставить на прежнем месте. Реконструкция (устройство новой системы) по всем правилам подразумевает перенос бачка на обратку и его замену с открытого на закрытый. Какова должна быть мощность циркуляционного насоса и куда и как его следует устанавливать?

Циркуляционные насосы, используемые в бытовых системах отопления, характеризуются низким потреблением электроэнергии – примерно 60-100 Вт, ведь они не обеспечивают подъем воды, а лишь служат вспомогательным инструментом для преодоления ею местного сопротивления в трубах. Такие насосы справедливо было бы сравнить с корабельным винтом, который толкает воду, продвигая, тем самым, судно, но при этом количество воды в море не прибавляется и не убавляется: общий баланс воды сохраняется на прежнем уровне. Подключенный к трубопроводу циркуляционный насос толкает воду, но, независимо от количества вытолкнутой воды, к нему с другой стороны поступает столько же воды. Таким образом, нет никаких оснований опасаться, что произойдет выталкивание насосом теплоносителя через открытый расширитель: система отопления является замкнутым контуром с постоянным количеством воды в нем.

В централизованные отопительные системы кроме циркуляционных, могут включаться и повысительные насосы, поднимающие давление и способные поднять воду. В принципе, именно повысительные насосы и следует называть насосами, тогда как циркуляционный насос уместно будет сравнить с вентилятором: обычный вентилятор может гонять воздух по квартире, но максимум, что он может, это создать циркуляцию воздуха, и никоим образом не в состоянии изменить атмосферное давление (даже если работает в наглухо закрытом помещении). Использование циркуляционного насоса дает возможность значительно увеличить радиус действия системы отопления, сократить диаметры трубопроводов, а также создать условия для присоединения систем к котлам, работающим с теплоносителем с повышенными параметрами.

В качестве важного параметра для обеспечения бесшумной работы водяных отопительных систем с насосной циркуляцией, выступает скорость движения теплоносителя. А именно, скорость теплоносителя не должна быть выше:
– в трубопроводах основных помещений жилых зданий, если условные проходы труб составляют 10, 15, 20 мм и более – 1.5, 1.2 и 1 м/с соответственно;
– в трубопроводах, проложенных во вспомогательных помещениях жилых домов – 1.5 м/с;
– в трубопроводах, проложенных непосредственно во вспомогательных зданиях – 2 м/с.

Чтобы работа системы была бесшумной и доставляла требуемый объем теплоносителя, следует сделать небольшой расчет. Нам уже известно, как ориентировочно определяется требуемая мощность котла (в киловаттах), с учетом площади отапливаемого помещения. Формула расчета оптимального расхода проходящей через котел воды, такова: Q=P , где Q обозначает расход проходящего через котел теплоносителя, (в л/мин), а P – мощность котла в киловаттах. К примеру, котел, мощность которого составляет 30 кВт, требует расхода воды около 30 л/мин. Для того, чтобы определить, каков будет расход теплоносителя на любом отрезке циркуляционного кольца, используется эта же формула.

К примеру, с учетом того, что уже известна мощность установленных на данном отрезке радиаторов, можно рассчитать расход воды для радиаторов, устанавливаемых в одной комнате. Предположив, что установленные радиаторы имеют мощность 6 кВт, расход воды составит приблизительно 6 л/мин. Рассчитав расход воды, несложно определить диаметр трубопровода. Указанные в таблице величины отражают принятые на практике соответствия диаметрам труб (при условии, что расход проходящего по ним теплоносителя не превышает 1.5 м в секунду). Затем определяется мощность циркуляционного насоса. Для каждых десяти метров длины циркуляционного кольца нужно 0.6 м напора насоса.

Соответствие диаметров трубопроводов с расходом теплоносителя
Расход, л/мин 5,7 15 30 53 83 170 320
Диаметр, дюймы 1/2 3/4 1 11/4 11/2 2 21/2

К примеру, при общей длине кольца циркуляции 90 м, напор насоса должен быть 5.4 м. Приобретаем в магазине (либо по каталогу) насос с нужным напором. При использовании труб с меньшим диаметром, чем рекомендованные в абзаце выше, мощность насоса должна быть больше, поскольку, чем тоньше труба, тем в ней больше гидравлическое сопротивление. Следовательно, при использовании труб с большим диаметром, допустимо уменьшение мощности насоса. Для обеспечения постоянной циркуляции воды в отопительных системах, рекомендуется производить установку не менее 2-х циркуляционных насосов, при этом один будет рабочим, а другой – резервным. Как вариант можно установить один насос, а другой оставить лежать в укромном месте, и в случае поломки первого произвести быструю замену.

Следует заметить, что вышеприведенный расчет системы отопления является весьма примитивным, не учитывающим различных факторов и характерных особенностей индивидуальных отопительных систем. В частности, если вы ведете строительство коттеджа со сложной архитектурой, то это потребует производства точных расчетов, что под силу только инженерам-теплотехникам. Можно с уверенностью сказать, что крайне неразумно вести строительство многомиллионного сооружения, не имея исполнительной документации – проекта, который учитывает все особенности объекта.

Заполненный водой циркуляционный насос в системе отопления испытывает равное гидростатическое давление со стороны двух патрубков (при условии, что вода не нагревается): всасывающего (входного) и нагнетательного (выходного), соединяемых с теплопроводами. Благодаря тому, что конструкция современных циркуляционных насосов предполагает наличие подшипников с водяной смазкой, насосы можно размещать как на обратном, так и на подающем трубопроводе, хотя, как правило, ставят на обратке. В первое время такое решение обусловливалось чисто техническими причинами: у насоса, размещенного в более холодной воде, срок службы подшипников, ротора, а также сальниковой набивки – больше. В настоящее время насосы устанавливаются на обратку скорее по привычке, поскольку в замкнутой системе местоположение циркуляционного насоса в плане создания искусственной циркуляции воды роли не играет.

Читайте так же:  Кран букса для душа виды

Более того, учитывая, что на подающем трубопроводе гидростатическое давление обычно меньше, размещение таких насосов именно на "подаче" более рационально. К примеру, расстояние от котла, на котором установлен расширительный бачок составляет 10 м в высоту. Это означает, что он создает статическое давление десятиметрового водяного столба, однако данное утверждение корректно лишь для нижнего трубопровода. В верхнем же давление будет меньше, поскольку и величина водяного столба здесь меньше. Таким образом, независимо от местоположения насоса он будет подвержен одинаковому давлению с обеих сторон: даже если, например, установить его на главном вертикальном подающем (либо обратном) стояке, разница давлений в обоих патрубках будет незначительной, ввиду небольших размеров насоса.

Однако, все сложнее, чем может показаться на первый взгляд. Работающий в замкнутом кольце отопительной системы насос, создает усиление циркуляции, посредством нагнетания воды в теплопровод с одной стороны, и засасывания – с другой. В результате уровень воды в расширительном баке останется неизменным после пуска циркуляционного насоса, поскольку равномерная работа насоса только создает циркуляцию при том же самом количестве воды. В связи с тем, что в данных условиях (постоянный объем воды в системе и равномерность действия насоса) уровень воды в расширительном баке остается постоянным, независимо от того работает ли насос, в точке соединения расширителя к трубам системы гидростатическое давление также будет постоянным. Поэтому точку присоединения и называют нейтральной, ведь развиваемое насосом циркуляционное давление никоим образом не влияет на создаваемое расширительным бачком статическое давление.

Следует отметить, что расширительный бак циркуляционного насоса в закрытых гидравлических системах служит своеобразным рубежом, после которого происходит смена знака у развиваемого насосом давления: до этой точки насос посредством создания компрессии нагнетает воду, а после нее всасывает воду с помощью вызываемого насосом разрежения. Таким образом, теплопроводы гидравлической системы на отрезке от насоса до точки постоянного давления (если считать по направлению движения воды) относятся к зоне нагнетания, а теплопроводы после данной точки – к зоне всасывания насоса.

Иными словами, если установить циркуляционный насос к трубопроводу сразу после точки присоединения расширительного бака, насосом будет производиться отсасывание воды из бака и ее нагнетание в систему, а при подключении насоса перед вышеуказанной точкой – насос будет выполнять функцию по откачиванию воды из системы и нагнетанию ее в расширительный бак.

Казалось бы, какое имеет значение, откачивается вода насосом из бачка или нагнетается в него – главное, чтобы вода крутилась по системе. Однако есть существенная разница, поскольку в работу системы включается создаваемое расширительным бачком статическое давление. В трубопроводе, расположенном в зоне нагнетания насоса, нельзя не считаться с тем, что в нем, сравнительно с давлением воды в состоянии покоя, гидростатическое давление повышено. В свою очередь, для трубопровода, расположенного в зоне всасывания насоса, необходим учет понижения давления, памятуя о том, что не исключена ситуация, в которой гидростатическое давление может не только понизиться до атмосферного, но и возникнет разрежение. Иными словами, за счет разности давлений в системе может появиться опасность высвобождения либо всасывания воздуха, или даже вскипания теплоносителя.

Для того, чтобы не столкнуться с проблемой нарушения циркуляции воды по причине ее вскипания либо подсасывания воздуха, следует соблюдать определенное правило, конструируя и производя гидравлический расчет систем отопления: при работе насоса в зоне всасывания (во всех точках трубопровода) гидростатическое давление всегда должно быть избыточным. Для соблюдения данного правила есть 4 способа.

1) Поднять расширительный бачок на достаточную высоту (не ниже 80 см). Этот способ является достаточно простым в условиях, когда реконструируются системы с естественной циркуляцией в насосную циркуляцию, но в то же время требующим помещения с высоким чердаком и мер по тщательному утеплению расширительного бака.

2) Переместить расширительный бачок в наиболее опасной верхней точке, чтобы включить верхнюю магистраль в зону нагнетания. Тут следует сделать пояснение. Элементом новых систем отопления являются подающие трубопроводы с насосной циркуляцией, и они производятся с уклонами к котлу, а не от котла, с целью обеспечения движения воздушных пузырьков попутно с водой, поскольку из-за противодействия побудительной силы циркуляционного насоса они не выплывут "против течения", как это происходит в системе с естественной циркуляцией.

Следовательно, верхняя точка системы получится на максимально удаленном, а не на главном стояке. Если вы реконструируете старую систему с естественной циркуляцией в насосную, то использование данного способа является достаточно трудоемким, поскольку понадобится переделывать трубопроводы. Для создания же новой системы этот способ не оправдан в связи с наличием других, более удачных вариантов.

3) Присоединить трубу расширительного бачка рядом с всасывающим патрубком циркуляционного насоса. То есть при реконструировании старой системы с естественной циркуляцией нужно просто отрезать бачок от подающей магистрали и перестыковать на обратку позади насоса, создав для него наиболее благоприятные условия.

4) Отойти от привычной схемы, при которой насос размещается на обратке, и включить его в магистраль "подачи" сразу за точкой присоединения расширительного бачка, что является самым простым способом реконструирования системы с естественной циркуляцией: ничего больше не надо переделывать, только врезать насос в трубу подачи. Но следует быть очень внимательным при выборе насоса, так как его придется размещать в неблагоприятных условиях высоких температур, а насосу надлежит надежно работать в течении длительного времени, что могут гарантировать лишь солидные фирмы-изготовители.

Производители современной сантехнической и отопительной арматуры дают возможность произвести замену расширительных бачков открытого типа на закрытые. Закрытый бачок не позволяет жидкости системы соприкасаться с воздухом, а это исключает испарение теплоносителя и его обогащение кислородом. Что, в свою очередь, позволяет снизить потери тепла и воды, а также способствует уменьшению внутренней коррозии отопительных приборов. Кроме того, в закрытом бачке исключено выливание жидкости наружу.

Экспанзомат, или расширительный бачок закрытого типа представляет собой капсулу овальной (шарообразной) формы, герметичная мембрана внутри которой делит ее на 2 части: воздушную и жидкостную. В воздушной части корпуса находится закачанная под давлением азотосодержащая смесь. До того момента, когда отопительная система заполнится водой, давление газовой смеси внутри бачка обеспечивает плотное прижатие диафрагмы к водяной части бачка. Нагревшаяся вода создает рабочее давление и увеличивает объем теплоносителя, в результате чего происходит выгибание мембраны бачка в сторону его газовой части. Когда рабочее давление и объем воды становятся максимальными, водяная часть бачка заполняется и газовая смесь максимально сжимается.

На случай продолжающегося повышения давления и, как следствие, растущего объема теплоносителя, предусмотрен предохранительный клапан, который и срабатывает в данной ситуации, сбрасывая воду. Полезный объем бака должен быть как минимум равен объему температурного расширения теплоносителя, при этом необходимо уравнять статическое давление столба теплоносителя в системе и предварительное давление в газовой части бака. Данные меры по подбору давления газовой смеси дают возможность мембране находиться в равновесии при включенной, но не заполненной отопительной системе.

Установка бачка закрытого типа может производиться в любой точке системы, но обычно он устанавливается рядом с котлом, поскольку нужно, по возможности, обеспечивать минимальную температуру жидкости в точке установки расширительного бачка. А как нам уже известно, лучшая точка установки циркуляционного насоса – сразу за расширительным бачком. В этой точке условия для работы насоса (как и в целом для отопительной системы) являются наиболее благоприятными. Однако такая схема отопительной системы имеет две проблемы: удаление воздуха и повышенное давление в котле. Конструкция систем с открытым расширительным баком предусматривает удаление воздуха противотоком через расширитель (в системе с естественной циркуляцией) либо попутно (системы с насосной циркуляцией).

В системе с закрытым баком подобного нет, она является полностью замкнутой и воздух не имеет выхода наружу. Воздушные пробки удаляются через установленный в верхней точке трубопровода автоматический прибор – спускник воздуха, снабженный поплавком и запорным клапаном. С увеличением давления выше определенного, клапан срабатывает и происходит стравливание воздуха в атмосферу. Альтернативой является установка на каждый радиатор отопления крана Маевского: детали, установка которой на служит для удаления воздушных пробок непосредственно из радиатора. Иногда краны Маевского входят в комплект радиаторов, но обычно предлагаются отдельно.

Читайте так же:  Почему в батареях слышен звук льющейся воды

Воздухоотводчики действуют по следующему принципу: за счет отсутствия воздуха, находящийся внутри прибора поплавок не позволяет выпускному клапану открыться. По мере увеличения количества воздуха в поплавковой камере, понижается уровень воды в воздухоотводчике, что приводит к опусканию поплавка и открытию выпускного клапана, выпускающего в результате этого процесса воздух в атмосферу. Выход воздуха приводит к повышению уровня воды в воздухоотводчике и всплытию поплавка, в результате чего выпускной клапан закрывается. Этот процесс идет до того момента, пока снова не соберется достаточно воздуха в поплавковой камере, чтобы понизить уровень воды, опустив поплавок.

Существуют различные по конструкции, форме и размерам автоматические воздухоотводчики, в том числе и устанавливаемые как непосредственно на радиаторах (Г-образной формы), так и на магистральных трубопроводах. В сравнении с автоматическими воздухоотводчиками, кран Маевского представляет собой обычную пробку, имеющую канал для отвода воздуха и ввернутый в него конусный винт. Путем выворачивания винта обеспечивается выход воздуха наружу через освободившийся канал. Выпускаются и воздухоотводчики с перекрывающим канал сброса воздуха металлическим шариком вместо конусного винта.

В качестве альтернативы автоматическим воздухоотводчикам и крану Маевского в отопительную систему включается сепаратор воздуха: основанный на применении закона Генри прибор. Как известно воздух в отопительных системах присутствует отчасти в растворенном виде, а отчасти – в микропузырьках. Проходящая через систему вместе с воздухом вода оказывается в областях различных температур и давлений. Согласно закону Генри, воздух в одних областях выделяется из воды, а в определенных областях – растворяется в ней. Находясь в котле, теплоноситель подвергается нагреву до высоких температур, в результате чего именно в нем из содержащейся в воздухе воды высвобождается максимальное количество воздуха в виде микропузырьков. Если их тотчас не отвести, то произойдет их растворение на других участках системы, где температура ниже. При удалении пузырьков сразу за котлом, на выходе сепаратора получается обезвоздушенная вода, поглощающая воздух на разных участках системы.

Комбинация котла и сепаратора воздуха позволяет использовать вышеописанный эффект, для того, чтобы поглотить воздух в системе и вывести его в атмосферу. Этот процесс идет постоянно, вплоть до полного вывода воздуха из системы. Сепаратор воздуха работает на основе принципа слияния микропузырьков. Иными словами, это значит, что происходит прилипание мельчайших пузырьков воздуха к поверхности специальных колец. Микропузырьки собираются вместе, образуя большие пузырьки, отделяющиеся и всплывающие в воздушную камеру сепаратора. Проходя через кольца, поток жидкости расходится в разных направлениях, а конструкция колец обеспечивает вступление проходящей через нее жидкости в контакт с поверхностью колец, что делает возможным прилипание мельчайших пузырьков и их слияние.

Возвращаясь к циркуляционному насосу, не лишним будет отметить следующее. В отопительных системах с протяженными трубопроводами и, как результат, большими гидропотерями, зачастую есть потребность в довольно мощных циркуляционных насосах, создающих на нагнетающем патрубке давление, превышающее то, на которое рассчитан отопительный котел. Проще говоря, если разместить насос на обратке непосредственно перед котлом, высок риск, что потекут соединения в теплообменнике котла. Чтобы не допустить этого, мощные циркуляционные насосы устанавливаются за котлом, а не перед ним, то есть на подающем трубопроводе. В этой связи возникает вопрос: где следует установить сепаратор – перед насосом или за ним? Ведущие изготовители систем отопления после тщательного изучения этого вопроса пришли к выводу, что сепаратор следует размещать перед насосом, чтобы предохранить его от повреждений пузырьками воздуха.

Сооружение автономной сети отопления гравитационного типа выбирают, если нецелесообразно, а иногда и невозможно установить циркуляционный насос или подключиться к централизованному электроснабжению.

Такая система обходится дешевле в обустройстве и полностью независима от электричества. Однако ее работоспособность во многом зависит от точности проектирования.

Чтобы система отопления с естественной циркуляцией функционировала бесперебойно, необходимо рассчитать ее параметры, правильно установить компоненты и обоснованно выбрать схему водяного контура. Мы поможем в решении этих вопросов.

Мы описали главные принципы работы гравитационной системы, привели советы по выбору трубопровода, обозначили правила сборки контура и размещения рабочих узлов. Отдельное внимание мы уделили особенностям проектирования и функционирования одно- и двухтрубной схемам отопления.

Принципы процесса естественной циркуляции

Процесс движения воды в контуре отопления без применения циркуляционного насоса происходит в силу естественных физических законов.

Понимание природы этих процессов позволит грамотно разработать проект системы отопления для типовых и нестандартных случаев.

Максимальная разность гидростатического давления

Основное физическое свойство любого теплоносителя (воды или антифриза), которое способствует его движению по контуру при естественной циркуляции – уменьшение плотности при увеличении температуры.

Плотность горячей воды меньше, чем холодной и поэтому возникает разница в гидростатическом давлении теплого и холодного столба жидкости. Холодная вода, стекая к теплообменнику, вытесняет горячую вверх по трубе.

Отопительный контур дома можно условно разделить на несколько фрагментов. По “горячим” фрагментам вода направляется вверх, а по “холодным” – вниз. Границами фрагментов являются верхняя и нижняя точка системы отопления.

Главной задачей при моделировании системы с естественной циркуляциейводы является достижение максимально возможной разницы между давлением столба жидкости в “горячем” и “холодном” фрагментах.

Классическим для естественной циркуляции элементом водяного контура является коллектор разгона (главный стояк) – вертикальная труба, направленная вверх от теплообменника.

Коллектор разгона должен иметь максимальную температуру, поэтому его утепляют на всей протяженности. Хотя, если высота коллектора не велика (как для одноэтажных домов), то можно не проводить утепление, так как вода в нем не успеет остыть.

Обычно систему проектируют таким образом, чтобы верхняя точка коллектора разгона совпадала с верхней точкой всего контура. Там устанавливают выход на бак-расширитель открытого типа или клапан для отвода воздуха, если используют мембранный бак.

Тогда длина “горячего” фрагмента контура является минимально возможной, что приводит к уменьшению теплопотерь на этом участке.

Также желательно, чтобы “горячий” фрагмент контура не сочетался с длительным участком, транспортирующим остывший теплоноситель. В идеале нижняя точка водяного контура совпадает с нижней точкой теплообменника, помещенного в устройство нагрева.

Для “холодного” сегмента водяного контура тоже есть свои правила, увеличивающие давление жидкости:

  • чем больше теплопотери на “холодном” участке отопительной сети, тем ниже температура воды и больше ее плотность, поэтому функционирование систем с естественной циркуляцией возможно только при значительной теплоотдаче;
  • чем больше расстояние от нижней точки контура к подключению радиаторов, тем больше участок столба воды с минимальной температурой и максимальной плотностью.

Чтобы обеспечить выполнение последнего правила, часто печь или котел устанавливают в самой нижней точке дома, например, в подвале. Таким размещением котла обеспечивают максимально возможное расстояние между нижним уровнем радиаторов и точкой входа воды в теплообменник.

Однако высота между нижней и верхней точками водяного контура при естественной циркуляции не должна быть слишком большой (на практике не более 10 метров). Печь или котел, нагревают только теплообменник и нижнюю часть коллектора разгона.

Если этот фрагмент незначителен относительно всей высоты водяного контура, то падение давления в “горячем” фрагменте контура будет несущественным и процесс циркуляции не будет запущен.

Минимизация сопротивления движению воды

При проектировании системы с естественной циркуляцией необходимо учитывать скорость движения теплоносителя по контуру.

Во-первых, чем быстрее скорость, тем быстрее будет происходить передача тепла по системе “котел – теплообменник – водяной контур – радиаторы отопления – помещение”.

Во-вторых, чем быстрее скорость жидкости через теплообменник, тем меньше вероятность ее закипания, что особенно важно при печном отоплении.

В системах отопления с принудительной циркуляцией скорость движения воды в основном зависит от параметров циркуляционного насоса.

При водяном отоплении с естественной циркуляцией скорость зависит от следующих факторов:

  • разницы давления между фрагментами контура в нижней его точке;
  • гидродинамического сопротивления отопительной системы.

Способы обеспечения максимальной разницы давления были рассмотрены выше. Гидродинамическое сопротивление реальной системы не поддается точному расчету по причине сложной математической модели и большого числа входящих данных, точность которых трудно гарантировать.

Читайте так же:  Как задувать эковату пылесосом

Тем не менее, существуют общие правила, соблюдение которых позволит уменьшить сопротивление отопительного контура.

Основным причинами снижения скорости движения воды являются сопротивление стенок труб и присутствие сужений из-за наличия фитингов или запорной арматуры. При небольшой скорости потока сопротивление стенок практически отсутствует.

Исключение составляют длинные и тонкие трубы, характерные для отопления с помощью теплого пола. Как правило, для него выделяют отдельные контуры с принудительной циркуляцией.

При выборе типов труб для контура с естественной циркуляцией придется учитывать наличие технических сужений при монтаже системы. Поэтому металлопластиковые трубы использовать при естественной циркуляции воды нежелательно по причине соединения их фитингами, со значительно меньшим внутренним диаметром.

Правила выбора и монтажа труб

Выбор между стальными или полипропиленовыми трубами при любой циркуляции происходит по критерию возможности их использования для горячей воды, а также с позиций цены, легкости монтажа и срока эксплуатации.

Стояк подачи монтируют из металлической трубы, так как через него проходит вода самой высокой температуры, а в случае печного отопления или неисправности теплообменника возможен вариант прохождения пара.

При естественной циркуляции необходимо использовать диаметр труб несколько больший, чем в случае применения циркуляционного насоса. Обычно, для обогрева помещений до 200 кв. м, диаметр коллектора разгона и трубы на входе обратки в теплообменник равен 2 дюймам.

Это вызвано меньшей скоростью воды по сравнению с вариантом принудительной циркуляции, что приводит к следующим проблемам:

  • снижение объема переносимого тепла за единицу времени от источника к обогреваемому помещению;
  • появление засоров или воздушных пробок, с которыми не сможет справиться небольшого напор.

Особенное внимание при использовании естественной циркуляции с нижней схемой подвода подачи необходимо уделить проблеме удаления воздуха из системы. Он не может полностью отводиться из теплоносителя через расширительный бак, т.к. закипающая вода поступает сперва в приборы по магистрали, расположенной ниже чем они сами.

При принудительной циркуляции напор воды сгоняет воздух к установленному в наивысшей точке системы воздухосборнику – устройству с автоматическим, ручным или полуавтоматическим управлением. С помощью кранов Маевского в основном производится регулировка теплоотдачи.

В гравитационных отопительных сетях с подачей, расположенной ниже приборов, краны Маевского применяются непосредственно для стравливания воздуха.

Воздух также может отводиться с помощью воздухоотводчиков, установленных на каждом стояке или на воздушной линии, проложенной параллельно магистралям системы. Из-за внушительного количества устройств для отвода воздуха гравитационные схемы с нижней разводкой применяются крайне редко.

При слабом напоре небольшая воздушная пробка способна полностью остановить систему обогрева. Так, согласно СНиП 41-01-2003 не допускается прокладывать без уклона трубопроводы систем отопления при скорости движения воды менее 0,25 м/с.

При естественной циркуляции такие скорости недостижимы. Поэтому кроме увеличения диаметра труб необходимо соблюдать постоянные уклоны для вывода воздуха из системы отопления. Уклон проектируют из расчета 2- 3 мм на 1 метр, в квартирных сетях наклон достигает 5 мм на погонный метр горизонтальной линии.

Уклон подачи делают по ходу движения воды, чтобы воздух двигался к баку-расширителю или системе, стравливающей воздух, расположенной в верхней точке контура. Хотя можно сделать и контр-уклон, но в этом случае необходимо дополнительно установить клапан для отвода воздуха.

Уклон магистрали обратки делают, как правило, по ходу движения охлажденной воды. Тогда нижняя точка контура будет совпадать с входом обратной трубы в теплогенератор.

При установке теплого пола небольшой площади в контуре с естественной циркуляцией необходимо не допустить попадания воздуха в узкие и горизонтально расположенные трубы этой обогревательной системы. Необходимо поставить устройство удаления воздуха перед теплым полом.

Однотрубные и двухтрубные схемы отопления

При разработке схемы отопления дома с естественной циркуляцией воды возможно проектирование как одного, так и нескольких отдельных контуров. Они могут существенно отличаться друг от друга. Вне зависимости от длины, количества радиаторов и других параметров, их выполняют по однотрубной или двухтрубной схеме.

Контур с использованием одной магистрали

Систему отопления с использованием одной и той же трубы для последовательного подвода воды к радиаторам называют однотрубной. Самым простым однотрубным вариантом является отопление металлическими трубами без использования радиаторов.

Это наиболее дешевый и наименее проблемный способ решения обогрева дома при выборе в пользу естественной циркуляции теплоносителя. Единственный значимый минус – внешний вид громоздких труб.

При самом экономном варианте однотрубной схемы с радиаторами отопления, горячая вода последовательно протекает через каждое устройство. Здесь необходимо минимальное количество труб и запорной арматуры.

По мере прохождения теплоноситель остывает, поэтому последующие радиаторы получают воду более холодную, что необходимо учитывать при расчете количества секций.

Самым эффективным способом подключения приборов отопления к однотрубной сети считается диагональный вариант.

Согласно этой схеме контуров отопления с естественным типом циркуляции горячая вода поступает в радиатор сверху, после охлаждения отводится через расположенный внизу патрубок. При прохождении подобным образом нагретая вода отдает максимальное количество тепла.

При нижнем подключении к батарее как входного патрубка, так и выходного, теплоотдача существенно уменьшается, потому что нагретому теплоносителю надо пройти максимально длинный путь. Из-за значительного остывания в подобных схемах не используются батареи с большим количеством секций.

Отопительные контуры с подобным подключением радиаторов получили название “Ленинградка“. Несмотря на отмеченные потери тепла, им отдают предпочтение в обустройстве систем квартирного отопления, что обусловлено более эстетичным видом прокладки трубопровода.

Существенным недостатком однотрубных сетей является невозможность отключить одну из секций отопления без прекращения циркуляции воды по всему контуру.

Поэтому обычно применяют модернизацию классической схемы с установкой “байпаса” для обхода радиатора с помощью ответвления с двумя шаровыми кранами или трехходовым краном. Это позволяет регулировать подачу воды к радиатору, вплоть до полного его отключения.

Для двух и более этажных строений применяют варианты однотрубной схемы с вертикальными стояками. В этом случае распределение горячей воды более равномерное, чем при горизонтальных стояках. К тому же вертикальные стояки менее протяженные и лучше вписываются в интерьер дома.

Вариант с применением обратной трубы

Когда одну трубу используют для подачи горячей воды к радиаторам, а вторую – для отвода охлажденной к котлу или печи, такую схему отопления называют двухтрубной. Подобную систему при наличии радиаторов отопления используют чаще, чем однотрубную.

Она более дорогая, так как требует монтажа дополнительной трубы, но имеет ряд значимых преимуществ:

  • более равномерное распределение температуры подаваемого к радиаторам теплоносителя;
  • проще выполнить расчет зависимости параметров радиаторов от площади отапливаемого помещения и необходимых значениях температуры;
  • эффективней регулировка подачи тепла к каждому радиатору.

В зависимости от направления движения охлажденной воды относительно горячей, двухтрубные системы подразделяют на попутные и тупиковые. В попутных схемах движение охлажденной воды происходит в том же направлении, что и горячей, поэтому длина цикла для всего контура совпадает.

В тупиковых схемах, охлажденная вода движется навстречу горячей, поэтому для разных радиаторов длины циклов оборота теплоносителя отличаются. Так как скорость в системе небольшая, то и время нагрева может существенно отличаться. Те радиаторы, у которых длина цикла круговорота воды меньше, будут нагреты быстрее.

Существует два типа расположения подводки относительно радиаторов отопления: верхняя и нижняя. При верхней подводке труба, подающая горячую воду, располагается выше радиаторов отопления, а при нижней подводке – ниже.

При нижней подводке возможно удаление воздуха через радиаторы и отсутствует необходимость проведения труб поверху, что хорошо с позиции дизайна помещения.

Однако без коллектора разгона перепад давления будет гораздо меньше, чем при использовании верхней подводки. Поэтому нижнюю подводку при отоплении помещений по принципу естественной циркуляции практически не применяют.

Выводы и полезное видео по теме

Организация однотрубной схема на основе электрокотла для небольшого дома:

Работа двухтрубной системы для одноэтажного деревянного дома на основе твердотопливного котла длительного горения:

Использование естественной циркуляции при движении воды в отопительном контуре требует точных расчетов и технически грамотного выполнения монтажных работ. При выполнении этих условий система отопления будет качественно нагревать помещения частного дома и избавит хозяев от шума насоса и зависимости от электроэнергии.

Если возникли вопросы по теме или есть желание поделиться личным опытом по организации и эксплуатации отопительной системы гравитационного типа, пожалуйста, оставляйте комментарии к этой статье. Блок для обратной связи расположен ниже.

Источник: iobogrev.ru

IFix