Точка росы при отрицательных температурах

Содержание

  1. Формула для расчета
  2. Термин «точка росы» в строительстве
  3. Точное определение
  4. Неправильное определение значения
  5. Значение ТР для условий проживания
  6. Физика конденсации пара
  7. Методы расчета ТР
  8. Расчетный метод
  9. Табличный метод
  10. Использование бытовых психрометров
  11. Портативные электронные термогигрометры
  12. Показания тепловизоров
  13. Варианты утепления стен жилища
  14. Стена без утепления
  15. Утепление с внутренней стороны помещения
  16. Утепление с наружной стороны здания
  17. Видео: точка росы в стене
  18. Теплотехнические расчеты в Temper-3D
  19. Разделы сайта
  20. Точка Росы — это максимальная температура поверхности, на которую выпадает конденсат
  21. Если поверхность холоднее или равна точке росы, то конденсат на неё выпадет
  22. Таблица для определения точки росы

При описании работ по установке теплоизоляции сооружений встречаются неизвестные словосочетания. Например, следует знать, что значит «точка росы». Это легко объяснить на бытовом примере.

Воздух — смесь азота, кислорода, других газов и пара. Температура, при достижении которой происходит конденсация пара, приобрела понятие точка росы. Такое явление наблюдается, когда кипит чайник, а испарения образуют водяные капли на холодных поверхностях.

Формула для расчета

Вычислить самостоятельно и точно рассчитать точку росы поможет следующая формула:

Здесь Тр означает саму температуру точки, b и a показывают равные (неизменные) величины, ln — натуральный логарифм, Т — температура внутри помещения, Rh — значение относительной влажности.

Как видно из формулы, значение напрямую зависит от величин двух параметров:

  • показателя увлажненности;
  • фактических показаний температуры.

При высокой относительной влажности параметр становится выше и ближе к уровню фактической температуры. Чтобы посчитать эту переменную величину, существует таблица с небольшим шагом параметров. По ней можно найти необходимое значение, измерив относительную влажность и фактическую температуру.

Таблица 1. Определение показателя с помощью соотношения влияющих параметров, от которых зависит точка росы

​По таблице вычисляем, что при температуре, например, 19 градусов и влажности 50% параметр конденсации составит 8,3 градуса.

Из данного видео становится понятно, какой толщины должен быть утеплитель для наиболее комфортных условий:

Термин «точка росы» в строительстве

Постоянно растущий и развивающийся рынок строительных товаров представляет широкий выбор материалов для теплоизоляции. К выбору теплоизоляции для производственных и жилых помещений необходимо подойти должным образом и при строительстве обратить внимание на рассматриваемый показатель.

Из-за неверного измерения точки росы часто происходит запотевание стен, появление плесени, а иногда и разрушение конструкций

Границу перехода от низкой температуры снаружи стен к более высоким внутри отапливаемых сооружений с возможным образованием конденсата специалисты считают точкой росы. На любой поверхности в помещении, показатель температуры которой будет приближен к параметру точки росы или достигнет значения ниже, будут появляться капли воды. Простейший пример: в середине некоторых помещений в холодное время на оконных стеклах стекает конденсат.

Основными факторами, влияющими на определение величины, считаются:

  • климатические факторы (значение температуры и увлажненность воздуха снаружи);
  • температурные значения внутри;
  • показатель влажности внутри;
  • величина толщины стен;
  • паропроницаемость теплоизоляции, применяемой при строительстве;
  • наличие отапливающих и вентилирующих систем;
  • назначение сооружений.

Правильное определение точки росы имеет важнейшее значение в строительстве

Только если правильно измеряется показатель, в дальнейшем можно комфортно эксплуатировать здание и снизит расходы на обслуживание в будущем.

Точное определение

Водяной пар чаще всего конденсируется на самих стенах или внутри их конструкции, если они недостаточно утеплены или построены. Без утеплителя значение будет находиться близко к температуре внутренней части стены, а в некоторых случаях и к стене в середине дома. Когда температура внутри ограждающих сооружений будет иметь величину ниже показателя, то во время похолодания при отрицательной температуре снаружи произойдет выпадение конденсата.

Есть несколько мест, где может находиться показатель на неутепленных конструкциях:

  • внутри конструкции, близко к наружной ее части, стена останется сухой;
  • внутри стены, но близко к внутренней части, стена становится мокрой при температурных перепадах;
  • та сторона стены, которая находится в здании, постоянно будет покрываться конденсатом.

Специалисты не рекомендуют производить утепление помещений изнутри, объясняя это тем, что при применении такого способа теплоизоляции параметр будет находиться под теплоизолирующим слоем в середине помещения. Вследствие этого произойдет большое скопление влаги.

  • конденсат может скапливаться в центре стены и во время холодов сдвигаться в сторону размещения теплоизолирующих компонентов;
  • местом скопления влаги может стать граница ограждающей конструкции и утепляющего слоя, который сыреет и образует плесень в середине комнат;
  • в середине самого теплоизолирующего слоя (он постепенно напитается влагой, начнет плесневеть и гнить изнутри).

Точка росы формируется тремя составляющими: атмосферным давлением, температурой воздуха и его влажностью

Пенопласт, минеральную вату или другой вид утеплителя необходимо поместить с наружной стороны здания, что позволит разместить значение в утепляющем слое (при таком расположении стены внутри будут оставаться сухими). Для более ясного понимания параметра существуют графики ее размещения на стенах домов с утеплением, а также на зданиях, не имеющих утепляющего слоя. Чтобы самостоятельно произвести такой расчет, можно определить точку росы в стене калькулятором.

Неправильное определение значения

Результатом ошибок, допускаемых во время расчета параметров, будет постоянное скопление конденсата, повышенная влажность, развитие грибковых налётов и плесени. Производственное, административное или жилое помещение не сможет служить долго: негативные процессы будут ускорять разрушение. Потребуются дополнительные расходы на текущее обслуживание и капитальный ремонт.

Понятие точка росы (далее ТР) используется в проектировании тепловой защиты зданий гражданского и промышленного назначения, является удобным параметром в расчетах систем осушки воздуха и пневматических установок. Точка росы окружающего воздуха учитывается при нанесении антикоррозионных покрытий на металлические подложки.

При температуре подложки ниже, чем ТР воздуха, на подложке присутствует конденсированная влага, не позволяющая достичь нужной адгезии. На крашеной поверхности образуются дефекты типа шелушения или пузырения слоя краски, способствующие возникновению преждевременной коррозии. Правильно выполненный расчет точки росы определяет, какой должна быть теплоизоляция жилого дома с учетом расхода тепла, влажности воздуха и особенностей воздухообмена в пределах помещений.

Читайте так же:  Гигрометр комнатный как пользоваться

Теплоизоляция жилого дома – составляющие элементы

Значение ТР для условий проживания

Температура точки росы служит своеобразным указателем на степень влажности воздуха изнутри жилого помещения. Значение температуры точки росы определяет уровень комфорта проживания в доме. Чем выше точка росы в каркасном доме, тем выше влажность в помещении. Если точка росы температура превышает 20 °C, то для большинства людей нахождение в помещении будет резко дискомфортным.

Атмосфера в такой комнате для сердечников и астматиков является крайне удушливой и непереносимой. Неправильно выполненное определение точки росы в стене жилого дома проводит к осаждению конденсата на поверхности стен и потолка комнаты. Намокшие стены провоцируют образование плесени и развитие микроорганизмов, которые попадают в организм человека вместе с вдыхаемым воздухом. Сконденсированная влага в материалах намокших стен и перекрытий зимой замерзает, резко увеличиваясь в объеме и ослабляя прочностные качества строительной конструкции.

На рисунке ниже показана отсыревшая деревянная стена с грибковыми проявлениями из-за неправильной теплоизоляции.

Грибок на стенах – результат неправильной теплоизоляции

Физика конденсации пара

Вода присутствует в окружающей обстановке нашего жилища в двух агрегатных состояниях:

  • жидком – это вода для приготовления пищи и санитарно-бытовых нужд;
  • газообразном – пар над кипящей водой или в качестве одной из фракций выдыхаемого воздуха.

Кроме таких очевидных мест следы влаги обязательно имеются в материалах элементов строительной конструкции здания: бетонных или кирпичных стенах, перекрытиях, основании пола. Идеально сухих стройматериалов в природе не существует. При устойчивой теплой погоде пар, присутствующий в воздухе, и влага в стенах жилища находятся в тепловом равновесии.

При этом парциальное давление пара в воздухе со стороны улицы (внешняя сторона стенки) и внутри дома (внутренняя сторона стенки) одинаковое. Значит, никакого движения водяного пара через стенку не происходит. В морозную погоду влажность холодного воздуха низкая, парциальное давление пара в таком воздухе пониженное. В соответствии с законами теплофизики пар повышенного давления (жилое помещение) начинает диффундировать сквозь стеновой материал на холодную улицу, где давление ниже.

Все строительные материалы, из которых возведены стены домов, обладают свойством паропроницаемости. Даже бетонные или кирпичные стены способны пропускать пар через свою толщу, хотя у бетона и кирпича паропроницаемость минимальная.

При прохождении через точку росы в стене пар переходит в жидкое агрегатное состояние, образуя конденсатную влагу.

Появление влаги в структуре стены сопровождается рядом негативных факторов:

  • Теплопроводность отсыревшей стены возрастает в несколько раз. Это будет означать, что теплообмен между обогреваемой комнатой и улицей интенсифицируется, в доме всегда будет холодно.
  • В холодное время года происходит периодическое замерзание конденсатной влаги в стене с последующим оттаиванием. Цикличность замерзаний разрушающе действует на структуру строительного материала, снижая срок безаварийной эксплуатации здания.

На рисунке ниже схематично отображено преобразование парообразной влаги в жидкое состояние (использован голубой цвет), когда ТР попадает внутрь стенки жилища.

Конденсирование влаги при нахождении ТР внутри стенки жилища

Методы расчета ТР

На вопрос, что такое точка росы, дан ответ в Своде Правил СП 50.13330.2012, регламентирующем вопросы тепловой защиты зданий. В п. Б.24 понятие ТР трактуют как температуру начала образования конденсатной влаги в воздухе с конкретными параметрами температуры и относительной влажности.

Величину ТР указывают в градусах Ц! Следует учитывать, что значение ТР никогда не может превышать фактический температурный параметр воздуха, для которого ТР определяется. Лишь в случае 100%-ной относительной влажности ТР совпадет с температурой воздуха.

В соответствии с определением ТР температура выпадения конденсатной влаги зависит от значений двух параметров:

  • от температуры воздуха;
  • от относительной влажности окружающего воздуха.

Например, для воздушных масс влажностью 40% и температурой 10 °C показатель ТР составит минус 2,9 °C. При влажности этого же объема в пределах 80% ТР уже достигнет плюс 6,7 °C. Для 100%-й влажности значения ТР и t воздуха совпадают = 10,0 °C.

При обустройстве тепловой защиты очень важно найти место, где может быть точка росы, чтобы не допустить образование конденсатной влаги в месте, нежелательном для обеспечения эффективной теплозащиты. Визуально определить положение ТР как место начального выпадения конденсата практически невозможно. Для показателя точка росы определение выполняется несколькими методами.

Расчетный метод

Проверенных практикой методик, как рассчитать точку росы, немало. Используемые расчетные формулы довольно громоздки, но дают результаты со сравнительно высокой степенью точности.

Очень удобна следующая формула для расчета ТР в плюсовом диапазоне температур до 60 °C:

TР = b*f(T,Rh)/(a-f(T,Rh), где

  • TР – температура начала конденсирования, то есть точка росы в стене, утеплителе либо окружающем воздухе;
  • f(T,Rh) = a*T/(b+T) + ln(Rh);
  • ln – натуральный логарифм;
  • а=17,27;
  • b=237,7;
  • Т – температура воздуха в °C;
  • Rh – относительная влажность, указанная в объемных долях (от 0,01 до 1,00).

Данная формула работает с погрешностью ±0,4 градуса Цельсия.

Существуют более простые формулы, работающие с погрешностью в пределах ±1,0 град. Ц, к примеру, Тр≈Т – (1-RH)/0,05.

Этой формулой можно воспользоваться, чтобы посчитать показатель относительной влажности через уже известную температуру ТР: RH≈1-0,05(Т- Тр ).

Табличный метод

В специальных многочисленных таблицах на основе лабораторных измерений указывают значения ТР в зависимости от показателей относительной влажности воздуха и его температуры. Довольно подробно определяет параметр точка росы таблица справочного приложения Р Свода Правил СП 23-101-2004 «Проектирование тепловой защиты зданий». На рис. ниже приведена аналогичная таблица точки росы, полностью соответствующая параметрам из ГОСТ и СП.

Таблица для определения точки росы

Темпера-
тура
воздуха, (°C) Температура точки росы (°C) при относительной влажности (%)
30% 35% 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%
30 10,5 12,9 14,9 16,8 18,4 20 21,4 22,7 23,9 25,1 26,2 27,2 28,2 29,1
29 9,7 12 14 15,9 17,5 19 20,4 21,7 23 24,1 25,2 26,2 27,2 28,1
28 8,8 11,1 13,1 15 16,6 18,1 19,5 20,8 22 23,2 24,2 25,2 26,2 27,1
27 8 10,2 12,2 14,1 15,7 17,2 18,6 19,9 21,1 22,2 23,3 24,3 25,2 26,1
26 7,1 9,4 11,4 13,2 14,8 16,3 17,6 18,9 20,1 21,2 22,3 23,3 24,2 25,1
25 6,2 8,5 10,5 12,2 13,9 15,3 16,7 18 19,1 20,3 21,3 22,3 23,2 24,1
24 5,4 7,6 9,6 11,3 12,9 14,4 15,8 17 18,2 19,3 20,3 21,3 22,3 23,1
23 4,5 6,7 8,7 10,4 12 13,5 14,8 16,1 17,2 18,3 19,4 20,3 21,3 22,2
22 3,6 5,9 7,8 9,5 11,1 12,5 13,9 15,1 16,3 17,4 18,4 19,4 20,3 21,1
21 2,8 5 6,9 8,6 10,2 11,6 12,9 14,2 15,3 16,4 17,4 18,4 19,3 20,2
20 1,9 4,1 6 7,7 9,3 10,7 12 13,2 14,4 15,4 16,4 17,4 18,3 19,2
19 1 3,2 5,1 6,8 8,3 9,8 11,1 12,3 13,4 14,5 15,5 16,4 17,3 18,2
18 0,2 2,3 4,2 5,9 7,4 8,8 10,1 11,3 12,5 13,5 14,5 15,4 16,3 17,2
17 -0,6 1,4 3,3 5 6,5 7,9 9,2 10,4 11,5 12,5 13,5 14,5 15,3 16,2
16 -1,4 0,5 2,4 4,1 5,6 7 8,2 9,4 10,5 11,6 12,6 13,5 14,4 15,2
15 -2,2 -0,3 1,5 3,2 4,7 6,1 7,3 8,5 9,6 10,6 11,6 12,5 13,4 14,2
14 -2,9 -1 0,6 2,3 3,7 5,1 6,4 7,5 8,6 9,6 10,6 11,5 12,4 13,2
13 -3,7 -1,9 -0,1 1,3 2,8 4,2 5,5 6,6 7,7 8,7 9,6 10,5 11,4 12,2
12 -4,5 -2,6 -1 0,4 1,9 3,2 4,5 5,7 6,7 7,7 8,7 9,6 10,4 11,2
11 -5,2 -3,4 -1,8 -0,4 1 2,3 3,5 4,7 5,8 6,7 7,7 8,6 9,4 10,2
10 -6 -4,2 -2,6 -1,2 0,1 1,4 2,6 3,7 4,8 5,8 6,7 7,6 8,4 9,2
* для промежуточных показателей, не указанных в таблице, определяется средняя величина

Читайте так же:  Пенопласт растворение в смеси растворителей ацетон ксилол

Использование бытовых психрометров

Психрометры, точнее, гигрометры психрометрические предназначены для измерений температуры воздуха и его относительной влажности. Современный гигрометр можно использовать как прибор для определения точки росы, так как на его корпус нанесено изображение психрометрической таблицы.

Используя показания обоих термометров прибора, по таблице определяется ТР. На рисунке ниже показаны модели современных бытовых психрометров, оснащенные психрометрическими таблицами, способствующими тому, как определить точку росы.

Модели бытовых психрометров

Портативные электронные термогигрометры

Точка росы в строительстве при теплотехническом обследовании помещений определяется при помощи портативных термогигрометров с дисплеями, оснащенными индикацией значений температуры окружающего воздуха, его влажности и параметра ТР.

Как выглядит электронный термогигрометр

Показания тепловизоров

Вычисление ТР не требуется производить, если пользоваться отдельными моделями тепловизоров строительного предназначения, имеющих функцию расчета ТР и отображающих поверхности с температурой ниже ТР при тепловизионной съемке. При заданных параметрах воздуха на компьютере можно обработать тепловизионные данные и показать на термограммах все участки, рискующие попасть в зону конденсации при утеплении стены или потолка.

Экран тепловизора в процессе съемки

Варианты утепления стен жилища

Параметр ТР является своеобразной границей температур, в которой происходит встреча внутреннего тепла и внешнего холода. В стеновых ограждающих конструкциях теплый воздух, диффундирующий в зимние холодные месяцы из отапливаемой комнаты на морозную улицу, переохлаждается.

Паровая фаза воды переходит во влажное состояние, осаждаясь на любой поверхности, имеющей температуру ниже ТР. Причиной возникновения конденсата является не только материал стены (деревянный дом, кирпичный или газобетонный), но и способ обустройства тепловой защиты здания, определяющий, в какую сторону смещается ТР.

Местоположение ТР зависит от следующих факторов:

  • показателей влажности внутри помещения и на улице;
  • показателей температуры воздуха внутри помещения и на улице;
  • толщины стены и утепляющего слоя;
  • места, где размещен утепляющий материал.

В зависимости от указанных факторов ТР может находиться не только на поверхности стены, но и в толще стены либо утепляющего материала. Варианты расположения ТР в системе «стена плюс утеплитель» предусматривают размещение утеплителя внутри помещения либо на наружной стороне ограждающей стенки (см. рис. ниже).

ТР для различных вариантов размещения утеплителя

Стена без утепления

Местоположение ТР приходится на толщу стены и способно смещаться в сторону улицы либо помещения в зависимости от изменяющихся параметров температур и влажности.

В любом случае, находится точка росы в газобетоне или в кирпичной стене, конденсат образуется сравнительно далеко от внутренней поверхности. Конденсатная влага скапливается в материале стены, в сильные морозы она замерзает. При потеплении влага оттаивает и испаряется наружу, в атмосферу.

Возможны три варианта размещения ТР в стене:

  • найденный расчетным или табличным способом показатель ТР попал между геометрическим центром толщины стенки и внешней поверхностью – внутренняя стенка осталась сухой;
  • ТР попадает между геометрическим центром стенки и внутренней поверхностью помещения – стены комнаты при резком похолодании могут намокнуть;
  • ТР точно попала на координату внутренней поверхности – всю зиму стена будет отсыревшей.

Потери тепла при неутепленной стене достигают 80%. Негативным моментом возникновения ТР в стене является постепенное разрушение стеновой конструкции.

Однородные по своей конструкции стены из кирпича, газобетона, керамзитных блоков и пр. имеют ТР в зимнее время внутри толщи материала. Многократные циклы замораживания/оттаивания ухудшают прочностные свойства стройматериалов и снижают прочность всей стеновой конструкции. Поэтому стены монолитной конструкции однородного состава необходимо утеплять теплоизолирующими материалами.

Утепление с внутренней стороны помещения

Для местоположения ТР возможны следующие варианты:

  • если точка росы в утеплителе, то утеплитель будет мокрым весь морозный период;
  • если структура материала утеплителя не допускает конденсации влаги внутри утепляющего слоя (пенополистирол и др.), то конденсат выпадет на границе внутренней стены и утепляющей полистирольной плиты. Отделка стены начнет мокнуть, что спровоцирует образование сырых пятен и плесени;
  • материал стены находится в зоне минусовых температур и подвергается негативным воздействиям температурных перепадов.

Читайте так же:  Регулировка окон кбе на зиму

Утепление с наружной стороны здания

ТР выведена во внешний теплоизолирующий слой. Возможность образования конденсата в комнате исключена, стены будут сухие.

Видео: точка росы в стене

Теория и практика показывают, что предпочтительнее обустраивать теплозащиту здания с его внешней стороны. Тогда больше шансов на то, что ТР окажется в зоне, не допускающей конденсации влаги внутри помещения.

Теплотехнические расчеты в Temper-3D

Разделы сайта

Английский термин Точки Росы — Dew point.

Точка Росы — это максимальная температура поверхности, на которую выпадает конденсат

Если поверхность холоднее или равна точке росы, то конденсат на неё выпадет

Чем ниже влажность, тем точка росы ниже фактической температуры.
Чем выше влажность, тем точка росы выше и ближе к фактической температуре.
Если относительная влажность составляет 100 %, то точка росы совпадает с фактической температурой.

Например, в ванной комнате, если включен душ (влажность близка к 100%), всегда зеркало «запотевает», и наоборот, если влажность равна нулю, то конденсат никогда не выпадет (в герметичном оконном стеклопакете влажность близка к 0%, там используется специальный адсорбент, который поглощает влагу, поэтому при любом охлаждении, он изнутри никогда не «запотеет»).

Если стеклопакет запотел изнутри, значит он не герметичен и адсорбент уже не может поглотить всю влагу.

Таблица для определения точки росы

Как видно из таблицы, точка росы зависит от температуры и влажности.

В левой колонке указана температура, сверху — влажность.

Например, при температуре 20 °C и влажности 55% (санитарные нормы для жилых помещений) точка росы равна 10,69 °C. Если в квартире температура, например в углу ниже 10,69 °C, то угол «запотеет». Влажность 55% , это достаточно сухое помещение (реально в жилом помещении, особенно на кухне влажность составляет 60%-70%, и более т.е. стена «потечет» (обои отклеятся) при более высокой температуре).

Температуры точки росы, для различных значений температур и относительной влажности воздуха в помещении:

40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

-5 -15,3 -14,04 -12,9 -11,84 -10,83 -9,96 -9,11 -8,31 -7,62 -6,89 -6,24 -5,6 -4 -14,4 -13,1 -11,93 -10,84 -9,89 -8,99 -8,11 -7,34 -6,62 -5,89 -5,24 -4,6 -3 -13,42 -12,16 -10,98 -9,91 -8,95 -7,99 -7,16 -6,37 -5,62 -4,9 -4,24 -3,6 -2 -12,58 -11,22 -10,04 -8,98 -7,95 -7,04 -6,21 -5,4 -4,62 -3,9 -3,34 -2,6 -1 -11,61 -10,28 -9,1 -7,98 -7,0 -6,09 -5,21 -4,43 -3,66 -2,94 -2,34 -1,6 -10,65 -9,34 -8,16 -7,05 -6,06 -5,14 -4,26 -3,46 -2,7 -1,96 -1,34 -0,62 1 -9,85 -8,52 -7,32 -6,22 -5,21 -4,26 -3,4 -2,58 -1,82 -1,08 -0,41 0,31 2 -9,07 -7,72 -6,52 -5,39 -4,38 -3,44 -2,56 -1,74 -0,97 -0,24 0,52 1,29 3 -8,22 -6,88 -5,66 -4,53 -3,52 -2,57 -1,69 -0,88 -0,08 0,74 1,52 2,29 4 -7,45 -6,07 -4,84 -3,74 -2,7 -1,75 -0,87 -0,01 0,87 1,72 2,5 3,26 5 -6,66 -5,26 -4,03 -2,91 -1,87 -0,92 -0,01 0,94 1,83 2,68 3,49 4,26 6 -5,81 -4,45 -3,22 -2,08 -1,04 -0,08 0,94 1,89 2,8 3,68 4,48 5,25 7 -5,01 -3,64 -2,39 -1,25 -0,21 0,87 1,9 2,85 3,77 4,66 5,47 6,25 8 -4,21 -2,83 -1,56 -0,42 -0,72 1,82 2,86 3,85 4,77 5,64 6,46 7,24 9 -3,41 -2,02 -0,78 0,46 1,66 2,77 3,82 4,81 5,74 6,62 7,45 8,24 10 -2,62 -1,22 0,08 1,39 2,6 3,72 4,78 5,77 7,71 7,6 8,44 9,23 11 -1,83 -0,42 0,98 1,32 3,54 4,68 5,74 6,74 7,68 8,58 9,43 10,23 12 -1,04 0,44 1,9 3,25 4,48 5,63 6,7 7,71 8,65 9,56 10,42 11,22 13 -0,25 1,35 2,82 4,18 5,42 6,58 7,66 8,68 9,62 10,54 11,41 12,21 14 0,63 2,26 3,76 5,11 6,36 7,53 8,62 9,64 10,59 11,52 12,4 13,21 15 1,51 3,17 4,68 6,04 7,3 8,48 9,58 10,6 11,59 12,5 13,38 14,21 16 2,41 4,08 5,6 6,97 8,24 9,43 10,54 11,57 12,56 13,48 14,36 15,2 17 3,31 4,99 6,52 7,9 9,18 10,37 11,5 12,54 13,53 14,46 15,36 16,19 18 4,2 5,9 7,44 8,83 10,12 11,32 12,46 13,51 14,5 15,44 16,34 17,19 19 5,09 6,81 8,36 9,76 11,06 12,27 13,42 14,48 15,47 16,42 17,32 18,19 20 6,0 7,72 9,28 10,69 12,0 13,22 14,38 15,44 16,44 17,4 18,32 19,18 21 6,9 8,62 10,2 11,62 12,94 14,17 15,33 16,4 17,41 18,38 19,3 20,18 22 7,69 9,52 11,12 12,56 13,88 15,12 16,28 17,37 18,38 19,36 20,3 21,6 23 8,68 10,43 12,03 13,48 14,82 16,07 17,23 18,34 19,38 20,34 21,28 22,15 24 9,57 11,34 12,94 14,41 15,76 17,02 18,19 19,3 20,35 21,32 22,26 23,15 25 10,46 12,75 13,86 15,34 16,7 17,97 19,15 20,26 21,32 22,3 23,24 24,14 26 11,35 13,15 14,78 16,27 17,64 18,95 20,11 21,22 22,29 23,28 24,22 25,14 27 12,24 14,05 15,7 17,19 18,57 19,87 21,06 22,18 23,26 24,26 25,22 26,13 28 13,13 14,95 16,61 18,11 19,5 20,81 22,01 23,14 24,23 25,24 26,2 27,12 29 14,02 15,86 17,52 19,04 20,44 21,75 22,96 24,11 25,2 26,22 27,2 28,12 30 14,92 16,77 18,44 19,97 21,38 22,69 23,92 25,08 26,17 27,2 28,18 29,11 31 15,82 17,68 19,36 20,9 22,32 23,64 24,88 26,04 27,14 28,08 29,16 30,1 32 16,71 18,58 20,27 21,83 23,26 24,59 25,83 27,0 28,11 29,16 30,16 31,19 33 17,6 19,48 21,18 22,76 24,2 25,54 26,78 27,97 29,08 30,14 31,14 32,19 34 18,49 20,38 22,1 23,68 25,14 26,49 27,74 28,94 30,05 31,12 32,12 33,08 35 19,38 21,28 23,02 24,6 26,08 27,64 28,7 29,91 31,02 32,1 33,12 34,08 40% 45% 50% 55% 60% 65% 70% 75% 80% 85% 90% 95%

Оригинальный документ:
СП 23-101-2004, Группа Ж24, ОКС 91.120.01, Дата введения 2004-06-01, ПРИЛОЖЕНИЕ Р (справочное)

Источник: iobogrev.ru

IFix